非定常変動気流場における住宅の通風性状に関する研究 その1 対向する壁面に開口を設けた場合の単純住宅モデルを 対象とした PIV と LES による通風性状の比較 Study on Unsteady Cross Ventilation airflow on a House Part 1 Comparison with PIV and LES results of Cross ventilation air-flow on simple house with windows in opposite walls

技術フェロー ○坂口 淳 (新潟県立大学) 技術フェロー 赤林 伸一 (新潟大学) 正会員 富永 禎秀 (新潟工科大学) 学生会員 有波 裕貴 (新潟大学) Jun SAKAGUCHI^{*1} Shin-ichi AKABAYASHI^{*2} Yoshihide TOMINAGA^{*3} Yuki ARINAMI^{*2} ^{*1}University of Niigata Prefecture ^{*2}Niigata University ^{*3}Niigata Institute of Technology

This study discribes unsteady cross ventilation air-flow on simple house model by analysis of Large-Eddy Simulation (LES) and wind tunnel experiments using Particle Image Velocimetry (PIV). In this paper, wind speed ratio distribution on the simple house model with two windows in opposite walls are reported. Air-flow distribution in case3 (wind tunnel experiments by PIV) is similar to case1 (analysis of LES) in vertical section. However, results of wind speed ratio by LES is larger than wind tunnel experiments by PIV.

1 研究目的

近年の画像処理技術の発展及びPCの性能向上に より、粒子画像流速測定法(PIV:Particle Image Velocimetry)が実用化されている。PIV は熱線風 速計等による従来の風速測定法とは異なり、流れ に対し非接触で、多数の空間位置で同時に気流速 度情報が得られる利点があり、有力な流れの解析 手法の一つとして考えられている。一方、Large Eddy Simulation(以下 LES)は非定常流れ場の数値 流体解析(以下 CFD 解析)で用いられ、近年、建 築環境工学の分野においても、LES は多数の研究成 果が報告されている。既往の研究^{x1~3)}では建物 周りや街区周辺、通風時の室内外における乱流場 の可視化・解析手法に関する検討が行われている。

本報(その1)では、住宅における通風時の気流 性状を対象に、LES 及び PIV を用いて非定常流れ場 の通風性状について解析する。測定対象は風洞内に おける単純住宅モデルとし、LES 及び PIV の解析結

果の比較、検討する。

2 研究概要

2.1 対象モデルの概要:図1に対象モデルの風向 に対するの設置条件を示す。対象モデルはLES 解析 及び PIV 測定において、一辺が 300mm の立方体で対 向する壁面中央部に 40mm × 40mm の開口部を持つ縮 尺模型(単純住宅モデル)とする。風向は、開口 部を風上・風下側に向けた場合(case1:水平断面、 case3:垂直断面)、開口部を風向に対して平行に向 けた場合(case2:水平断面)とする。

2.2 PIV 測定の概要:表1に実験装置の仕様を、 表2にPIV 測定のパラメータを、表3に各測定 caseの撮影条件を、図2にPIV 測定の概要を示す。 測定は大型境界層風洞内*1で行い、風洞内の基準 風速は3m/sとする。測定には出力2Wと1Wの2 台の連続光レーザを使用し、水平断面及び垂直断面 において測定領域全体をほぼ均一に可視化できる位 置にレーザを設置する。各測定においてカメラの 画角の中心と対象モデルの中心を一致させる場合 (case1-1、2-1、3-1)と画角の中心と各開口部を一

+ .	 4
	=
14	x

Camera	ハイ (1024pixel×1	イスピードカメラPhotron FASTCAM SA3 024pixel,500fps,シャッタースピード:S=1/500)
Laser	DPGL-2W	LD振起Nd:YAG/YVO₄レーザ
		波長532nm,出力2W
		O~30kHzで変調可能な連続光
	G1000	LD振起Nd:YAG/YVO₄レーザ
		波長532nm,出力1W
		O~10kHzで変調可能な連続光
SoftWare	カメラ制御	Photron FASTCAM Viewer ver.3.3.8
	PIV解析	Flow-Expert ver1.25

致させる場合 (case1-2、1-3、3-2、3-3) の測定を 行う。シーディングはダクトを取り付けたスモーク ジェネレーターを風上側に設置して行う*2。

2.3 LES 解析の概要:表4にLES 解析条件を、図 3にLES解析対象モデル及び解析領域^{*3}を示す。数 値流体解析には、汎用数値流体解析ソフト STREAM ver.9を使用する。LES 解析の subgrid scale モデ ル (SGS モデル)は Dynamic 型 Smagorinsky モデ ルを使用し、等温解析で行う。壁面境界条件には Werner-Wengle 型の境界条件を三層モデルに拡張し た条件式^{文6)}を使用する。

本研究における LES 解析は、先ず、開口部が存 在しない単純住宅モデルにおいて、ドライバー領 域を用いた流入変動気流を作成する為の解析(プ レ解析)を行う。次に、作成した流入変動気流を 開口部を設けた単純住宅モデルに対して流入さ せて解析(実解析)を行う。LES 解析における初 期乱流場は変動成分として、各風速成分の振幅を u=1.0[m/s]、v=3.0[m/s]、w=3.0[m/s]として与え、 計算開始後2.6[s] までをプレ解析とする。実解析 開始後2.0[s]間はモデル開口部を開放してから室 内気流分布が形成されるまでの移行期間としてデー

表2 PIV 測定のパラメータ

・トPC 単位:[mm] 図2 PIV 測定の概要

タを破棄し、4.6[s]~7.8[s]までの計3.2[s]間 を実解析の結果とする。

3 測定結果

3.1 PIV 測定結果: 図4に PIV 測定による瞬時風 速ベクトル^{※4}を示す。測定結果は PIV 測定時にお ける基準風速3m/sにより、風速比として基準化し て示す。

(1) case1 水平断面: case1-1 において、風上側か らの気流が比較的速い風速で対象モデルに衝突し、 Y =180mmの模型外壁面付近において気流の剥離に よる渦を形成する様子が観察される。

又、風上側からの気流は対象モデルの風上側の開 口部付近で縮流して模型内部へ流入する様子が観察 される。流入した気流により、対象モデル室内では 左右交互に振幅する風速比 0.4 程度の流れ場が形成 される。

(2) case2 水平断面: case1 と同様に風上側から の気流が対象モデルに衝突する様子が観察される。 又、両開口部付近では気流の剥離による渦を形成 する。case1と比較して気流は比較的遅い風速で開

SGSモデル	Dynamic型 Smagorinskyモデル					
解析領域	$7.8(x) \times 1.8(y) \times 1.8(z)[m]$					
単純戸建住宅モデル		0.3(x) × 0.3(y) >	(0.3(z)[m]			
開口面積	0.04×0.04=0.0016[m ²]					
	流入	ドライバー	領域により作成			
	流出	自然流出				
		Ymin,Ymax,Zmax面	フリースリップ			
境界条件	壁境界	Zmin面	拡張型ノースリップ ^{文6)}			
		部品面	<u>拡張型ノースリップ^{文6)}</u>			
		流体と接する全ての面	拡張型ノースリップ ^{文6)}			
解析時間	プレ解析	2.6[s]				
7411141141	実解析	5.2[s]				
時間刻み∆t	1.0×10 ⁻⁵ [s]					
温度	等温					
	流入	1/4乗則(基準高)	さ1.0[m]、流速5.0[m/s])			
初期封流場		流速成分uの振幅1.0[m/s]				
	変動成分	流速成分vの振幅3.0[m/s]				
		流速成分wの振幅3.0[m/s]				
最小メッシュ幅		0.005[r	n]			
解析領域メッシュ数		$210(x) \times 148(y) \times 11$	7(z)=3,636,360			
			40			
▲向 400 ▲ 400 ▲ 400						
		7800				
800 ドライバー領域 <u>300</u>						
1800 900 300 10 1300						
y 3150 x (c)解析領域 単位∶[mm]						
図 3 LES 解析対象モデル及び解析領域 ^{※3}						

表4 LES 解析条件

口部より交互に模型内部へ流入し、対象モデル室内 の開口部付近で風速比 0.2 程度の流れ場を形成する。

既往の研究^{×5)*5}と比較して、水平断面における PIV 測定結果では特に風下側の対象モデル後流域に おいて良好な気流速度情報が得られていない。これ は、実験装置の配置条件、可視化測定機器の性能に より、PIV 測定に必要な輝度が測定領域全体で均一 に得られなかったためと考えられる。

(3) case3 垂直断面:風上側からの接近流の流入 プロファイルは、床面付近では床面の摩擦による 影響により比較的風速が遅く、床面から離れた中 央部分(Z=200mm付近)では風速比0.5程度と比 較的速い風速となる。風上側からの気流は対象モ デルに衝突し、風上側の壁面下部(X=200mm、Z =50mm付近)及び対象モデル屋根面(X=350mm、Z =350mm付近)において定常的に渦を形成する。又、 風上側の開口部からは気流が下降しながら模型内部 に流入し、対象モデル室内に主流部分では風速比 0.4程度の流れ場を形成する。

3.2 LES 解析結果: 図5にLES 解析による瞬時風 速ベクトルを、図6に流入変動気流の平均風速比分 布(ドライバー領域下流端部)を示す。解析結果は LES 解析における基準風速5m/sにより、風速比と して基準化して示す。ドライバー領域下流端部にお ける平均風速比は、基準となる1/4 乗則の流入プロ ファイルとほぼ同様である。

(1) case1 水平断面(Z=150mm):対象モデル周辺 において、Y=360mmを軸に概ね左右対称の流れ場 を形成する。風上側からの気流は開口部付近で縮流 し、外壁面付近における風速比 0.2 程度の比較的遅 い風速から対象モデル室内に風速比 0.5 程度の速い 風速となって開口部より流入する。

又、開口部からの流入気流は左右に振幅して流入 し、風下側の隅角部から壁面を沿って風上側の開口 部へ向かう流れ場を左右交互に形成する。

(2) case2 水平断面(Z=150mm): case1 と同様に対象モデル周辺において、Y=360mm を軸に概ね左右対称の流れ場を形成する。対象モデル外壁面に衝突した気流は外壁面に沿って流れ、隅角部で剥離し、開口部付近で剥離による渦を形成する様子が観察される。両開口部からは対象モデル室内に風速比 0.3 程度と比較的遅い風速で交互に気流の流入出が生じる。

(3) case1 垂直断面(Y=900mm):風上側の壁面下(X=120mm、Z=30mm付近)及び対象モデル屋根面(X=220mm、Z=320mm付近)において渦を形成する。又、開口部から気流が模型内部に流入し、対象モデル室内の主流部分では風速比 0.5 程度の流れ場を形成する。

LES 解析結果と PIV 測定結果を比較すると、可視

化により十分な輝度が得られる測定範囲では、対象 モデル室内外における気流性状は概ね一致した結果 となっている。しかしながら、定量的な比較では、 風速比は LES 解析の方が相対的に大きな値となる。

4 まとめ

1. PIV 測定結果

- ① case1 において風上側からの気流が対象モデルに 衝突し、風上側の開口部では気流が縮流し、対象 モデル室内に流入する様子が観察される。
- ② case2 は case1 と比較して気流は比較的遅い風速 で開口部より交互に模型内部に流入し、対象モデ ル室内の開口部付近で流れ場を形成する。
- ③ case3 は風上側からの気流は対象モデルに衝突 し、風上側の壁面下部及び対象モデル屋根面にお いて渦を形成する。

2. LES 解析結果

- ① case1 において風上側からの気流は開口部付近で 縮流し、対象モデル室内に開口部より風速比 0.5 程度の比較的速い風速で気流が流入する様子が観 察される。
- ② case2 において開口部付近では気流の剥離による 渦が形成され、開口部からは対象モデル室内に比 較的遅い風速で交互に気流の流入出が生じ、流れ 場を形成する。
- ③ LES 解析結果と PIV 測定結果を比較すると、定量的 な比較では、風速比は全体的に LES 解析の方が相対 的に大きな値となる。

注釈

- ※1 測定には新潟工科大学所有の大型境界層風洞を使用する。
- ※2 シーディングには難燃性のスモークを使用する。
- ※3 解析領域は風洞を模擬し、7.8m(長さ)×1.8m(高さ)
 × 1.8m(幅)とする。
- ※4 (c)case3-2は解析対象領域(500mm × 500mm)の内、床面 部を除いた範囲(400mm × 500mm)である。
- ※5 既往の研究^{x8)}との実験装置の相違は、高速度カメラを高速度 CCD カメラ k-Ⅱ(解像度:640pixel × 480pixel)から Photron SA3(解像:1024pixel × 1024pixel)に変更し、 撮影速度を 200[fps]から 500[fps]に変更した。又、本研究 では対象モデルの寸法を一辺 200mm から 300mm に変更した。

