住宅における効率的なハイブリッド空調に関する研究

1 研究目的
現在、温室効果ガスを含む酸化炭素の増大による地球温暖化が深刻化している。二酸化炭素は、経済活動の基礎となっているエネルギー源である化石燃料の燃焼によって排出される。また、化石燃料の大量消費により、資源の枯渇も問題となっている。このため、一層の省エネルギー化が求められ、あらためて自然エネルギーの有効利用を考えた居住環境調整手法が注目されている。そこで住宅において室内温熱環境を快適な状態に保つため、冷房負荷の低減による省エネルギー化を図るため、建物の物理的環境、日射遮蔽の効果、夜間通風の利用、蓄熱体の設置による省エネルギー効果を検討することを目的とする。

本研究では、日本各都市における戸建住宅・集合住宅を対象に夏季に日射遮蔽、夜間通風、蓄熱体を設置したハイブリッド空調を行った場合の室内温度、冷房負荷を熱負荷シミュレーション及び換気回路網シミュレーションを用いて解析する。解析結果から快適な室内環境に優れた冷房・通風計画手法を明らかとする。また冷房負荷が低減することによる経済効果、二酸化炭素の排出低減量など環境負荷評価を行い、その有効性を検討することを目的とする。

2 戸建住宅を対象とした数値解析

対象の概要
解析対象住宅：日本建築学会住宅用標準問題モデルを対象とする。図1に対象住宅の平面を、表1に断熱構造を示す。家族構成は夫婦と子供2人である。

対象地域：東京、新潟市及び日本の都市を対象とする。気象データには日本建築学会の拡張メタデータを用いる。

解析方法：居間において冷房負荷及び室内温熱環境に関する数値解析を行う。熱負荷シミュレーションにはフランス国立建築研究所が開発した多数室熱負荷計算プログラムを用い、換気回路網計算にはガラムモデルを用いる。表2に解析対象番号と窓の開閉条件、日射遮蔽条件、蓄熱体の有無を示す。

解析条件：計算期間は7〜9月とし、5、6月を計算

表2 解析

<table>
<thead>
<tr>
<th>窓の開閉条件</th>
<th>日射遮蔽</th>
<th>蓄熱体</th>
</tr>
</thead>
<tbody>
<tr>
<td>終日開全</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>夜間開יקה</td>
<td>あり</td>
<td>あり</td>
</tr>
<tr>
<td>夜間開け</td>
<td>あり</td>
<td>あり</td>
</tr>
<tr>
<td>夜間開け</td>
<td>あり</td>
<td>あり</td>
</tr>
</tbody>
</table>

表3 内部熱源・空調スケジュール

この文脈では、詳細なデータは該当する情報が記載されていないため、具体的な詳細は省略します。
の助走期間とする。表 3 に冷房、換気量、人体、照明等の内部発熱スケジュールを示す。各スケジュールは空気調和・衛生工学会の「住宅の消費エネルギー計算用設定条件のモデル化」文献 2 に参考に作成した。

図 2 に東京の最高気温日 に示す室内温度、冷房負荷の時間変化を示す。日射遮蔽、遮蔽なしと遮蔽ありを比較した日中の冷房負荷低減効果は大きい。

図 3 に東京の 8 月の各解析 に示す日積算冷房負荷の比較を示す。

図 4 に各都市における夏（7 月～9 月）の冷房負荷低減量とに対する各解析の低減率を示す。日射遮蔽の効果は大きく、どの都市においても冷房負荷低減
率は○%以上であり、〜%程度の低減量となっている。また、夜間通風の効果は小さく、どの都市でも冷房負荷低減率は5%以下である。また、日射遮蔽・夜間通風・蓄熱体の設置を組み合わせたリは全ての都市において最も冷房負荷低減量が大きく、特に札幌、仙台では冷房負荷低減率が○%以上となる。

黒枠経済効果

表5に各都市の電力料金低減額を示す。電力料金低減額は、エアコンの成績係数 3.3、日電1%当たりの料金を円として算出する。日射遮蔽の効果による電力料金低減は多く、各都市において〜%〜%円程度の電力料金が低減できる。夜間通風の効果による電力料金低減額は少なく、〜%〜%円程度である。

黒枠環境負荷低減効果

表6に各都市の冷房負荷低減によるの排出低減量を示す。低減量はの排出原単位に冷房負荷低減量を乗じて算出する。また、ここでの値は換算を用いる。

表6 各都市の排出低減量 7〜9月

都市
札幌
仙台
新潟
東京
名古屋
大阪
広島
高松
福岡
那覇

表7 集合住宅の断熱構造

都市
札幌
仙台
新潟
東京
名古屋
大阪
広島
高松
福岡
那覇

図4 集合住宅モデルの平面図 と

注(1)(2)換算：排出される二酸化炭素そのものの重量であり、国連基準で使用される単位。
(1)火力：最もの排出量多い火力発電所の平均値
総電力：全発電所の平均値

の排出低減量は冷房負荷低減量に比しており、が最も低減が大きい。

図3 集合住宅を対象とした数値解析

対象の概念

解析対象住宅：集合・都市整備公団の示す設計モデルより中間層一般住戸を選び、1982年を基準年として解析する。図4に集合住宅モデルの平面図を示す。家族構成は現建住宅と同様とする。

対象地域：戸建住宅と同様とする。

解析方法：居間・和室のにおける冷房負荷及び室内温環境に関する数値解析を行う。熱負荷シュレーションは戸建住宅と同様とする。換気量は表4に示す集計住宅におけるの換気回数を参考に基準換気回数、窓開放率、窓空気量を算出した。表8に解析を命番号と窓の開閉条件、日射遮蔽条件、外出時の冷房の運転有無を示す。解析条件：計算期間は戸建住宅と同様とする。図9に冷房、換気量のスケジュールを示す。人体、照明等の内部
発熱スケジュールは戸建住宅と同様とする。

数値解析結果

室内温度、冷房負荷の時間変化

図5に東京の最高気温日0000の室内温度、冷房負荷の時間変化を示す。例出時において急激な室内温度上昇が見られるが、窓を開放することにより室温は0000から0000まで約4℃低下する（0000止除時-夜間通風あり）と通風なしを比較。しかし、冷房運転再開時の冷房負荷は外出時に窓を開放しない0000と比較して極めて大きい。これは外気の流入による潜熱負荷の増大が原因と考えられる。

各解析結果の比較

図6に東京の8月の各解析結果の日積算冷房負荷の比較を示す。

日射遮蔽：図600に日射遮蔽の有無による日積算冷房負荷の比較を示す。日射を遮蔽することで冷房負荷を約5%低減することができ、冷房負荷低減に効果的である。

夜間通風：図6000に夜間通風の有無による日積算冷房負荷の比較を示す。冷房負荷低減率は約1%であり、夜間通風の効果は小さい。

外出時の通風：図6000に外出時の通風の有無による日積算冷房負荷の比較を示す。外出時に通風することで冷房負荷は増加し、その効果はマイナスに作用する。

外出時の冷房：図6000に外出時の冷房の有無による日積算冷房負荷の比較を示す。外出時に冷房することで冷房負荷は増加し、その効果はマイナスに作用する。

表9 内部発熱・空調スケジュール

<table>
<thead>
<tr>
<th>冷房</th>
<th>夜間通風</th>
<th>種類</th>
<th>発熱</th>
<th>負荷率</th>
</tr>
</thead>
</table>
| 連續運転 | 床下 | 200 | 100 | 50%
| 連続運転 | タービ | 200 | 100 | 50%
| 外出時 | 負荷率 | 200 | 100 | 50%

図5 室内温度と冷房負荷の時間変化（東京）
（最高気温日）
房費荷は増加し、その効果はマイナスに作用する。

日本各都市の比較

表に各都市における夏季(7月〜9月)の冷房費荷低減量を示す。日射遮蔽による効果は大きく、広島、高松、福岡、那覇では冷房費荷低減量が○○○○以上である。また、夜間通風外部時を含むの効果は、札幌で○○○○、仙台で○○○○、新潟で○○○○の冷房費荷を低減しているが、他都市においては、マイナスに作用する。夜間通風の効果は、那覇ではマイナスに作用するが、他の地域では、冷房費荷低減に効果的である。札幌、仙台での冷房費荷低減量は○○○○以上である。平均外気温の低い札幌では、日射遮蔽、外気時・夜間通風を組み合わせた○○○○、平均外気温が高い那覇では、日射遮蔽、終日窓全閉を組み合わせた○○○○、他の都市では日射遮蔽、夜間通風を組み合わせた○○○○が最も冷房費荷低減に効果的である。冷房費荷低減効果は地域によって異なり、外気温、湿度などの気候条件が影響していると考えられる。

経済効果

表に各都市の電力料金低減額を示す。日射遮蔽と夜間通風を組み合わせた○○○○は、札幌、新潟、名古屋、広島、高松で電力料金低減額が○○○円以上であり、経済効果は大きい。しかし、都市によっては効果がマイナスに作用し、○○○○、○○○○では都市によって電力料金が増加する場合もある。

環境費荷低減効果

表に各都市の○○の排出低減量を示す。日射遮蔽と夜間通風を組み合わせた○○は各都市において大幅な○○排出低減が可能であり、環境費荷低減に対する効果が大きい。

表 Ⅱ 各都市の電力料金低減額(7月〜9月)

<table>
<thead>
<tr>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
</tr>
</thead>
<tbody>
<tr>
<td>札幌</td>
<td>仙台</td>
<td>新潟</td>
<td>東京</td>
<td>名古屋</td>
<td>大阪</td>
<td>広島</td>
<td>高松</td>
</tr>
<tr>
<td>那覇</td>
<td>福岡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 Ⅱ 各都市における冷房費荷低減量と冷房費荷低減率(7月〜9月)

<table>
<thead>
<tr>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
</tr>
</thead>
<tbody>
<tr>
<td>札幌</td>
<td>仙台</td>
<td>新潟</td>
<td>東京</td>
<td>名古屋</td>
<td>大阪</td>
<td>広島</td>
<td>高松</td>
</tr>
<tr>
<td>那覇</td>
<td>福岡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 Ⅱ 各都市の○○排出低減量(7月〜9月)

<table>
<thead>
<tr>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
<th>都市</th>
</tr>
</thead>
<tbody>
<tr>
<td>札幌</td>
<td>仙台</td>
<td>新潟</td>
<td>東京</td>
<td>名古屋</td>
<td>大阪</td>
<td>広島</td>
<td>高松</td>
</tr>
<tr>
<td>那覇</td>
<td>福岡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

□日射遮蔽あり、夜間通風あり、外冷・外出時冷房あり 冷房費荷低減量と冷房費荷低減率の単位はそれぞれ(○○)、(％)
4 戸建住宅と集合住宅の比較
冷房負荷低減量を冷房面積あたりの数値に換算し、戸建住宅と集合住宅の冷房負荷低減効果の特徴と地域性を比較・検討する。

図7 日射遮蔽の効果
図7 に日射遮蔽の効果の比較を示す。冷房負荷低減量、冷房負荷低減率ともに全ての都市において戸建住宅の方が、日射遮蔽の効果は大きい。

図8 夜間通風の効果
図8 に夜間通風の効果の比較を示す。福岡、那覇以外の都市では集合住宅の方が夜間通風による冷房負荷低減効果は高い。

図9 日射遮蔽と夜間通風を組み合わせた効果
図9 に日射遮蔽と夜間通風を組み合わせた効果の比較を示す。冷房負荷低減量は、全ての都市において戸建住宅の方が多く、冷房負荷低減は平均外気温の高い札幌、仙台では集合住宅の方が高く、平均外気温の高い那覇では戸建住宅の方が高くなる。

5 まとめ
戸建住宅では、全ての都市において日射遮蔽により冷房負荷を〇％以上低減することが可能であり、冷房負荷低減に効果的である。夜間通風による冷房負荷低減率は各都市で〇％以下であり、その効果は日射遮蔽に比べ小さい。集合住宅では、どの都市においても日射遮蔽による冷房負荷低減効果は大きいため、夜間通風による冷房負荷低減率は、札幌、仙台において〇％、〇％とその効果は大きいが、那覇においてはその効果はマイナスに作用し、冷房負荷を増大させる結果となった。7～9月は日平均外気温が高くなる1日にそれぞれ℃が高温になる不効果が原因と考えられる。

図7 日射遮蔽の効果の比較
図8 夜間通風の効果の比較
図9 日射遮蔽と夜間通風を組み合わせた効果の比較

【参考文献】
- 『市川光弘『標準問題の提案』（住宅用標準問題）』
- 『空気調和-衛生工学会』
- 『住宅の消費エネルギー計算用設定条件のモデル化』
- 『住宅・都市整備団体汎用設計モデル』
- 村上周三、赤林伸一：
 『トレーサーガス法を利用した住宅の自然通風に関する風洞実験ガイドライン、パルコミー、室外気候物等の通風に及ぼす影響に関する検討』