建築・都市空間における受動喫煙に関する研究 市街地における受動喫煙のリスク解析

研究目的

近年我が国では、平成14年の東京都千代田区における『安全で快適な千代田区の生活環境の整備に関する条例』を皮切りとした地方自治体における路上喫煙禁止条例の制定、平成30年の東京都受動喫煙防止条例の制定、 令和2年4月に全面施行される改正健康増進法による屋 内での原則禁煙など、たばこの健康への影響に対する関 心が高まっている。

これら条例及び法令により防止を目指している受動喫 煙は、1981年に平山雄医学博士が発表した、『Non-smoking wives of heavy smokes have a higher risk of lung cancer: a study from Japan』(通称:平山論文)によっ て世界で最初にその可能性が示された。この論文では、 喫煙者の夫を持つ非喫煙者の妻は肺癌による死亡リスク が高くなり、また夫の喫煙本数が多いほど高リスクにな ると報告されている。平山論文が発表されて以来、受動 喫煙に関する研究が各国で取り組まれ、受動喫煙は多く の疾病において罹患のリスクを上昇させるということが 確実視あるいは示唆されると医学系研究では報告されて いる。

これら医学系研究においては、主としてコホート研究 という手法がとられている。コホート研究とは、研究対 象とする疾病に現時点で罹患していない被験者集団のう ち、その疾病の原因として疑われる要素を有する群(曝 露群)と有さない群(非曝露群)とを、介入^{*1}を行わず に一定期間に渡って追跡観察し、両群における疾病の罹 患率などを比較することでその因果関係を推定する研究 手法である。

コホート研究の手法がとられた受動喫煙に関する医学 系研究では、タバコ煙に曝露する生活によって特定の疾 病に対して罹患率が上昇するなどといった健康への影響 の有無とその程度を統計的・定性的に評価することが可 能である。しかしながら、タバコ煙中に200種類以上含 まれるとされる有害物質についてのそれぞれの恕限度^{*2} は殆ど解明されておらず、タバコ煙にどれだけ曝露する とどれだけ健康への影響が生じるかは明らかとなってい ない。従って、受動喫煙による健康被害を防止するとい う目的で定量的にタバコ煙への曝露を制限することは現 状困難であり、喫煙の規制は指定された場所のみでの許 可や、指定地域において路上での喫煙を禁止するという 策がとられる傾向にある。

井上 悠一郎 指導教員 赤林 伸一 教授

現在我が国では、道路上での喫煙が全面禁止されてい る地域があるのに対して、屋内では喫煙室や喫煙スペー スでの喫煙が認められている場合も多い。我が国の受動 喫煙防止に関する条例及び法令は、屋外での受動喫煙に 対して厳しく規制をしながら、屋内での喫煙に対しては 比較的緩やかであるといえる。これは喫煙に関する規制 において先進的である欧米諸国と比べると逆の傾向であ る。また環境工学的な視点で、発生する汚染質の拡散・ 希釈を考察すると、屋内空間に比較して巨大な屋外空間 における自然風の拡散作用は極めて大きく、屋内と比較 して有害物質の濃度が恕限度を超える可能性は相対的に 低くなると予想される。しかしながらこのような法案が 提案・可決されることは、受動喫煙に関する環境工学的 な研究が乏しく、タバコ煙の拡散性状について十分な知 見が蓄積させておらず、本来必要な健康被害の生じる受 動喫煙のリスクに関する議論、検討が満足にされなかっ たためだと考えられる。

日本たばこ産業株式会社の発表によると、平成30年 5月現在の我が国における喫煙人口(推計値)は男女計 1880万人にのぼり、喫煙率は男性27.8%女性8.7%計 17.9%である。喫煙人口は年々減少しているが、未だ喫 煙が一部少数によってされる行為とは言い難い。喫煙者 と非喫煙者が共存可能な社会とするためには、その規制 の方法については学術的な知見から十分に検討されるべ きである。また非喫煙者の健康被害を防止するためにも 効果的な対策が必要である。そのためにはタバコ煙の拡 散性状を解析し、受動喫煙のリスクについて検討するこ とが重要である。

本研究では、始めに喫煙によって生じる呼出煙及び副流 煙を対象に PIV 測定(粒子画像流速測定法)により気流性 状の把握を行う。次に CFD 解析 (RANS)により、実験での 気流性状を再現する喫煙する人体モデル(以下、喫煙者モ デル)を作成する。作成した喫煙者モデルを用いて、市街 地において喫煙時に生じる一酸化炭素及び粒子状物質を 対象に、汚染質濃度分布の解析を行う。又、市街地におけ る典型的な汚染質発生源である、自動車排ガスの濃度分布 についても解析を行い、喫煙によって生じる汚染質濃度分 布との相対的な比較を行う。建築・都市空間において受動 喫煙がおこるリスクを明らかとすることで、今後の受動喫 煙防止政策の策定や喫煙所の適切な設置場所の選定など に関する基礎的な資料を整備することを目的とする。 2 タバコ煙の PIV 測定及び喫煙する人体モデルの検討 受動喫煙のリスク解析を行うために、RANS 解析に用い る喫煙者モデルの作成が必要である。そのため呼出煙及 び副流煙の PIV 測定及び RANS 解析に使用する喫煙者モ デルの作成を行い、喫煙者モデルを対象とした呼出気流 及びたばこ単体モデルからの上昇流の解析を行い、PIV 測定結果と比較検討する。

2.1 PIV 測定の概要

2.1.1 測定対象: 図1に呼出煙の PIV 測定の概要を示す。 呼出煙の測定は2.7[m]×4.5[m]×2.4[m]の実験室内 において、喫煙者と非喫煙者を1.3[m]^{文1)}離れて向かい 合わせ、実際に喫煙させて行う。測定断面は、喫煙者及 び非喫煙者の正中線上とする。副流煙の測定は、同じ実 験室内において、点火したたばこを三脚に固定して行う。 測定断面はたばこ中心の鉛直断面とする。なお、可視化 において特にシーディングはせず、発生するタバコ煙を トレーサとして測定を行う。

2.1.2 測定条件:表1に実験機器の概要を、表2にPIV 測定パラメータを示す。喫煙者及び非喫煙者はレーザー 光が直接照射されるため、保護メガネを着用する。保護 メガネはスペクタクル形(サイドシールドあり)の一眼 形、532nmのレーザー光に対応した赤色レンズの完全吸 収型である。なお、本実験は新潟大学倫理委員会の承認 を得ている(承認番号: 2019-0039)。

2.2 RANS 解析の概要

2.2.1 解析対象:図2に喫煙者モデルの概要、図3に呼 出の発生スケジュール、図4に呼出気流解析モデルの概 要、図5にたばこによる上昇流解析モデルの概要を示す。 人体モデルは我が国の標準的な成人男性を想定する。体表 面温度は 33.7[℃]^{☆2)}、対流熱伝達率は 3 [W/(m²・K)]^{☆2)}

<u>表1 実験機器の概要</u>			<u>表2_PIV 測定パラメータ</u>		
	呼出煙	副流煙	0	ハイスピード	Distant FACTORN CAD
測定断面	鉛直断面		Camera	カメラ	PHOTFON FASIGAM SA3
画像サイズ[pixel]	1024 × 1024				LD励起Ld:YAG/YV04レーザ
キャリブレーション値 [mm/pixel]	1.19	1.47	Laser	DPGL-3W	波長:532[nm]
測定対象領域[mm]	1200 × 1200	1500 × 1500			出力:3[W]×2台
測定時間[s]	16	30		- ノニ 生山 幼山	Photron FASTCAM
測定間隔[ms]([fps])	8 (125)		SoftWare	リメラ制御	Viewer ver.3.3.8
検査領域[pixel]	32 × 32	20 × 20	SUILWAIE	PIV解析	Flow-Expert
探查領域[pixel]	±20	±10			ver. 1. 2. 13. 0

とする。たばこは右手で腰の高さ(z=0.9[m])に保持して いる状態**3とする。また、呼出煙の発生源となる口を高 さ z=1.5[m]、正中線上に配置する。呼出温度は 32[℃]、 たばこ単体モデルの燃焼部温度は 600[℃]^{文3)}、副流煙発 生部の温度は400[℃]^{文3)}とする。

2.2.2 解析条件:表3に解析条件を示す。RANS 解析に は汎用数値流体解析ソフト STREAM Ver.13を使用する。 解析領域は呼出解析モデルで5[m]×5[m]×5[m]、た ばこ上昇流解析モデルで2.5[m]×2.5[m]×2.5[m]とし、 流入境界条件は0.01[m/s]とする。また、雰囲気温度は 実験時の室温に合わせ25[℃]とする。

たばこによる上昇流解析モデルの概要

図 5

2.3 PIV 測定結果

2.3.1 呼出煙の測定結果:図6に呼出煙のPIV測定結果 を示す。発生した呼出煙は、大きく乱れながら緩やかに 上昇し、非喫煙者頭部付近に到達する。非喫煙者の頭部 付近に広く拡散し、一部呼吸域付近への到達も見られる。 2.3.2 副流煙の測定結果:図7に副流煙のPIV測定結 果を示す。副流煙の流速は、煙発生部より約20[cm]上 部で最大の約0.35[m/s]となる。煙の発生直後はほぼ 直上へ上昇するが、煙発生部より約40[cm]上部で気流 に乱れが生じる。

2.4 RANS 解析結果

2.4.1 喫煙者モデルによる呼出の解析結果:図8に喫 煙者モデルによる呼出の解析結果を示す。発生した呼出 気流は、PIV 測定と比較して乱れが少なく、やや速く上 昇し、非喫煙者の頭上へと流れる。非喫煙者付近への拡 散は見られない。

2.4.2 たばこ単体モデルによる上昇流の解析結果:図 9にたばこ単体モデルによる上昇流の解析結果を示す。 たばこ単体モデルによる上昇流の流速は、煙発生部より 約20[cm]上部で最大の約0.35[m/s]となる。気流は大 きく乱れることはなく、ほぼ直上へ上昇する。

2.5 PIV 測定結果と RANS 解析結果の比較

RANS 解析によって、呼出気流、たばこによる上昇流と もに概ね実験結果を再現しているが、実験結果と比較す ると乱れが小さくなる傾向にある。気流の乱れによる拡 散作用が少なくなることで、RANS 解析では実際と比較し て、汚染質濃度が恕限度を超える範囲の最大到達距離が 過大評価される可能性がある。

(c) PIV 測定結果(t=9.0[s]) 図6 呼出煙のPIV 測定結果 非喫煙老

日 市街地における受動喫煙のリスク解析

作成した喫煙者モデルを用いて、市街地の路上にお ける受動喫煙のリスク解析を行う。始めに、市街地モ デルを対象とした気流分布の解析を行う。次に市街地 モデルで解析した気流分布を対象領域の流速ベクトル として与え、対象領域内の汚染質の濃度分布の解析を 行う。また同時に自動車排ガスによる汚染質の濃度分 布についても解析を行い、喫煙時によって生じる汚染 質濃度分布との相対的な比較を行う。

3.1 RANS 解析の概要

3.1.1 解析対象: 図10に市街地モデルの概要、図11 に建物近傍での喫煙モデルの概要、図12に自動車モデ ルの概要、表4に汚染質の発生量を示す。市街地モデル は、50[m]×50[m]×100[m]の建物を25[m]間隔で4 ×4棟配置する。市街地モデルの風上側から3棟目の 建物とその周辺の道路を含む 100 [m] × 100 [m] × 10 [m] . を解析対象領域とする。建物の四隅には2.5[m]×2.5[m] ×5[m]のスペースを設け、その建物敷地内に喫煙者 モデルをそれぞれ1人ずつ計4人配置する。建物敷地 の周囲3[m]を歩道とし、歩道中央に5[m]間隔で非喫 煙者として人体モデルを配置する。車道には歩道から 0.5[m]の位置に自動車モデルを計8台配置する。自動 車モデルは排気量2,000[cc]のセダン型のガソリンエ ンジン車とする。アイドリング時のエンジン発熱量は

5.3 [kW] ^{文4)}、排ガス温度は 85 [℃]とする。なお、汚染 質の恕限度は、一酸化炭素が10[ppm]^{文8)}、粒子状物質 が 0.15[mg/m³] $^{(x8)}$ とする。

3.1.2 解析条件: 表5に解析 case を示す。RANS 解析に は汎用数値流体解析ソフトSTREAM Ver.13 を使用する。 市街地モデルの解析を行う際の基準流入プロファイル は、U∝Z^{1/4}(U:流速、Z:高さ)とし、基準風速は、

= 1 : 江沈哲のみ ナ 昌

する	+	▲ 江沈府の改上員	L				
7 ②。 衣4 汚栄貝の先生重							
		一酸化炭素	粒子状物質				
喫煙者モデル	呼出煙	13.7[mg/本] ^{文5)}	4[mg/本] ^{文6)*4}				
	副流煙	36.6[mg/本] ^{文5)}	6[mg/本] ^{文6)*4}				
自動車モデル	排ガス	2.875[mg/s] ^{文7)*5}	0.0125[mg/s] ^{文7)*5}				

(b)

建物近傍での喫煙モデルの概要

3.2 RANS 解析結果

図14に喫煙による一酸化炭素の濃度分布を、図15 に粒子状物質の濃度分布を示す。いずれの解析 case においても、喫煙によって汚染質濃度が成人の呼吸 域(z=1.5[m])で恕限度を超える範囲は歩道上の非喫 煙者に到達していない。それぞれの汚染質について caseA-1(基準風速1[m/s]、風向角0[°])で比較す ると、汚染質発生源が喫煙者の場合、汚染質濃度が 恕限度を超える範囲は、粒子状物質のほうが広くな る。また、基準風速が速くなるほど汚染質濃度が恕 限度を超える範囲は狭くなり、市街地の屋外におけ る喫煙で恕限度を超える汚染質に非喫煙者が曝露す る可能性は極めて限定的であると考えられる。

図 14 喫煙による一酸化炭素の濃度分布 (z=1.5[m]水平断面)

図 16 に自動車排ガスによる一酸化炭素の濃度分布 を示す。ほとんどの解析 case において、自動車排ガ スによって汚染質濃度が成人の呼吸域で恕限度を超 える範囲が歩道上に広く分布しており、caseC-3(基 準風速5 [m/s]、風向角 45[°])を除く8 case で汚 染質濃度が恕限度を超える範囲が歩道上の非喫煙者 に到達する。汚染質発生源が自動車の場合、汚染質 濃度が恕限度を超える範囲は、一酸化炭素のほうが 広くなる。また、基準風速が速くなるほど汚染質濃 度が恕限度を超える範囲は狭くなるが、市街地にお いて自動車排ガスによって恕限度を超える汚染質に 非喫煙者が曝露する可能性は高いと考えられる。

今回の条件でたばこと自動車を比較すると、市街 地で自動車排ガスによる健康被害の発生リスクのほ さが、たばこのリスクトルオ 高いしまさくわる

(a)caseA-1(基準風速 1 [m/s] 風向角 [O °])

図 15 喫煙による粒子状物質の濃度分布 (z=1.5[m] 水平断面)

4 結論

- 4.1 タバコ煙の PIV 測定及び喫煙する人体モデルの検討
- ① RANS 解析によって、呼出気流、たばこによる上昇 流ともに概ね実験結果を再現した。
- ② RANS 解析による呼出気流、たばこによる上昇流は、 PIV 測定と比較すると乱れが小さくなる傾向にある。
- ③ RANS 解析では、気流の乱れによる拡散作用が少な くなることで、実際と比較して汚染質濃度が恕限 度を超える範囲の最大到達距離が過大評価される 可能性がある。

4.2 市街地路上における受動喫煙のリスク解析

10.0

0.0

5.0

①基準風速が速いほど汚染質濃度が恕限度を超える範 囲は、狭くなる傾向にある。

- ②市街地において、喫煙によって汚染質濃度が恕限 度を超える範囲は狭く、受動喫煙が発生するリ スクは極めて限定的である。
- ③市街地において、自動車排ガスによって汚染質濃 度が恕限度を超える範囲は広く、歩行者が恕限

度を超える汚染質に曝露するリスクが高い。 注釈

- ※1 ※2 ※3
- ×4
- 介入とは、治療、診断、生活指導などの健康に影響を与える行為を指す。 忽限度とは、人の健康などに悪影響を及ぼさない上限の値である。 喫煙者の前方 0.1[m]、身体中心より右 0.1[m]、地上 <math>0.9[m]にたばこを配置する。 たばこから発生する税子状物質の総量 10[mg/本] のうち、呼出煙と副流煙の割合は、文5)の実験データの参考に、呼出煙より4 [mg/本]、副流煙より6 [mg/本]
- とする。 とする。 どする。 どする。 どする。 どする。 どする。 とする。 に の汚染質発生量は、文7)の規制値をもとに算出する。一酸化 炭素の発生量が規制値の1.15[g/km]の場合、自動車の燃費を10[km/1]とすると 燃料1[1]あたり11.5[g/L]となり、アイドリング時における燃料消費を15[ml/nin] (0.0025[L/s])とすると、その発生量は2.875[mg/s]となる。 粒子状物質につい でも発生量が規制値の0.05[g/km]の場合、同様に算出すると0.0125[mg/s]となる。 参考文献 で1) 社た、[con 49452 トスの単一型になって
- (献ら「CFD 解析による受動喫煙性状の検討」 生産研究 51(1) 1999 年 1 月 皆ら「人体表面の対流熱伝達率に関する CFD 解析」 第 8 回数値流体力学シンボジウム 1994 年 12 月 大久保千代次、「受動喫煙の物理化学」 公衆衛生誌 1(2) 1992 年 オーム社 空気調和・衛生工学会編 「CFD ガイドブック」 平成 29 年 11 月 村松茂登彦「紙巻さたばこの自然燃焼における移動現象に関する研究」 専売中研報 1981 年 木村ら「喫煙による室内空気汚染とその対策」 労働科学 1990 年 国土交返着「新車におする排ガス規制について」 平成 17 年 厚生労働省「職場における喫煙対策のためのガイドライン」平成 15 年 文1) 文2)

П

建物

caseB-1 基準風速3[m/s]風向角O[°]

- 文3) 文4) 文5)

- 文6) 文7) 「<u>職場</u>に

風向

風向

自動可

「喫煙者

caseA-3 基準風速 1 [m/s] 風向角 45[°

П

建物

非喫煙味

caseC-1 基準風速5[m/s]風向角O[°]

吃裡志

П

caseB-3 基準風速3[m/s]風向角45[°] 図 16 自動車排ガスによる一酸化炭素の濃度分布 caseC-3 基準風速5[m/s]風向角 45[°